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a b s t r a c t

The present paper makes three distinct improvements over an earlier investigation of
Kalpathy and Ward. We analyze the length of the entire election process (not just one
participant’s duration), for a randomized election algorithm, with a truncated geometric
number of survivors in each round.We not only analyze themean and variance;we analyze
the asymptotic distribution of the entire election process. We also introduce a new variant
of the election that guarantees a unique winner will be chosen; this methodology should
bemore useful in practice than the previousmethodology. Themethod of analysis includes
a precise analytic (complex-valued) approach, relying on singularity analysis of probability
generating functions.

© 2015 Elsevier B.V. All rights reserved.

1. Motivation

This is a sequel paper to Kalpathy and Ward (2014), which also appears in Statistics and Probability Letters. The earlier
paper introduces a randomized leader election algorithm, in which a truncated geometric number of participants survive
from round to round. (Louchard and Prodinger (2009), constitutes a good starting point for readers who are unfamiliar with
randomized leader election algorithms; they also have extensive references, to provide a broader context.)

Kalpathy and Ward (2014) precisely analyze the number of rounds that a particular contestant survives in the election.
That analysis, however, had three key shortcomings. (1) It also focused on only the duration of a particular contestant;
it did not analyze the length of the entire election (which should be more interesting and more useful in practice). (2) It
only analyzed the mean and variation of the duration of a particular contestant (who was not necessarily the winner), but
it did not discuss the asymptotic distribution of the duration (the analysis contained in the present investigation is more
informative and useful). (3) The method of election in the earlier paper did not guarantee a unique winner.

The present paper addresses all three of these issueswith the earlier paper.We focus on the duration of the entire election,
not just of one participant. We go beyond the mean and variance, and analyze also the asymptotic distribution of the entire
election. We also analyze two variants of the election, namely, the version from the original paper, and also a new style of
election in which a unique winner is guaranteed to appear at the end of the election process.

∗ Corresponding author.
E-mail addresses: louchard@ulb.ac.be (G. Louchard), mdw@purdue.edu (M.D. Ward).

http://dx.doi.org/10.1016/j.spl.2015.02.018
0167-7152/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.spl.2015.02.018
http://www.elsevier.com/locate/stapro
http://www.elsevier.com/locate/stapro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spl.2015.02.018&domain=pdf
mailto:louchard@ulb.ac.be
mailto:mdw@purdue.edu
http://dx.doi.org/10.1016/j.spl.2015.02.018


G. Louchard, M.D. Ward / Statistics and Probability Letters 101 (2015) 40–48 41

As another point of motivation for this sequel paper, the authors discover (in the proofs of Theorems 3.1 and 3.4) that
the total length of each of these styles of election, when starting with n participants, can be decomposed into a sum of n− 1
independent random variables that do not have identical distributions. This surprising point about the decomposition of
the length of the whole election is enlightened in the analysis by using moment generating functions. More precisely (in
the proof of Theorem 3.1), from the representation of φn(t) := E(etXn) for n ≥ 2, shown in Eq. (1), it is surprising to see a
decomposition of Xn in a sum of n − 1 independent random variables. Indeed, we see that Xn has the same distribution as
Z2 + Z3 + · · · + Zn, where the Zj’s are independent, non-negative random variables, and Z2 has moment generating function
φ2(t) =

etp(1+q)
1−q2(q+etp)

, while Zj has moment generating function 1−qj

1−qj(q+etp)
(for 3 ≤ j ≤ n). An analogous decomposition holds

in the proof of Theorem 3.4, because as we see in Eq. (5), we have a decomposition of Yn into a sum of n − 1 independent,
non-negative random variables that do not have identical distributions.

2. Definitions

We consider elections for which, if n contestants are present in a round, then Kn contestants proceed to the next round,
where Kn is a truncated geometric random variablewith parameters p and q := 1 − p. So the mass of Kn is

P(Kn = ℓ) =
pqℓ

1 − qn+1
, for ℓ = 0, 1, . . . , n.

We study the number of rounds needed for the election is two distinct situations. The difference occurs in how the one
of the base conditions is handled, namely, what happens when Kn = 0.

1. Setup #1. As in Kalpathy and Ward (2014), if Kn = 0 in one of the rounds, the election stops, and the remaining
n participants can all be treated as winners, or (alternatively) all considered as losers, but the main point is that
no additional rounds of the election take place. (It is easy to show that the Kalpathy–Ward election, starting with n
participants, will end without a unique winner with probability 1

1+q

n
j=3

1−qj

(1−pqj−qj+1)
.)

2. Setup #2. In the literature, it is very common that, when all of the current participants fail to advance to the next round,
all of them are given another chance to participate in one more (renewal) round.

We define Xn and Yn as the number of rounds, when starting with n participants, for the elections given in setups #1 and
#2, respectively.

For example, consider an election with 20 initial participants. If 8 survive in round 1 (and 12 are eliminated), and 5
survive in round 2 (and 3 are eliminated), and 0 survive in round 3 (all 5 are eliminated), then X20 = 3 because 3 rounds
were needed for the election. On the other hand, in such a situation, setup #2mandates that the 5 participants from round 3
are all resurrected and get to continue for subsequent rounds. Suppose that these 5 participants are resurrected, and exactly
1 of the 5 survives in round 4. Then Y20 = 4 because 4 rounds were needed for the election.

3. Main results

First we give some results about the Kalpathy–Ward model from Kalpathy and Ward (2014) (Setup #1).

Theorem 3.1. The expected number of rounds E(Xn) in an election (in setup #1), for n ≥ 2, is

E(Xn) = p +

∞
ℓ=1

pqℓ

1 − qℓ
−

∞
k=0

pqn+k+1

1 − qn+k+1
.

The variance Var(Xn) is

Var(Xn) =

∞
ℓ=1

pqℓ(1 − qℓ+1)

(1 − qℓ)2
− q(q + 1)−

∞
k=0

pqn+k+1(1 − qn+k+2)

(1 − qn+k+1)2
.

Remark 3.1. Since C1 := p +


∞

ℓ=1
pqℓ

1−qℓ
is a constant (depending only on p an q, but not on n), we have

E(Xn) = C1 − qn+1
+Θ(q2n).

Similarly, because C2 :=


∞

ℓ=1
pqℓ(1−qℓ+1)
(1−qℓ)2

− q(q + 1) is a constant, then we have

Var(Xn) = C2 − qn+1
+Θ(q2n).

Using Maple (with some human guidance), we can derive more terms in the asymptotic expansion, if desired. We can also
analyze higher moments of Xn with the methods found in the proofs section.
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Theorem 3.2. The probability that the number of rounds Xn in an election (in setup #1) is equal to k is exponentially decreasing
as k → ∞. Namely, for n ≥ 2, we have

P(Xn = k) ∼
p(q + 1)z2
(1 − q3)

 n
j=3

1 − qj

(1 − qj+1)(1 − z2/zj)


(z2)−k as k → ∞,

where zj =
1−qj+1

pqj
.

For an example of the rapid decrease in limn→∞ P(Xn = k), when p = 3/10 and q = 7/10, we have z2 = 4.469387755 . . . .

Theorem 3.3. The limiting probability that the number of rounds in an election (in setup #1) is equal to k is exponentially
decreasing as k → ∞. We have

lim
n→∞

P(Xn = k) ∼ (r)(z2)−k+1 as k → ∞,

where

r :=

∞
ℓ=2

pqℓ
p(q + 1)z2
(1 − q3)

 ℓ
j=3

1 − qj

(1 − qj+1)(1 − z2/zj)


,

with zj =
1−qj+1

pqj
.

Nowwe give some results about a modification to the model of election, so that the election is guaranteed to end with a
unique winner (Setup #2).

Theorem 3.4. The expected number of rounds E(Yn) in an election (in setup #2), for n ≥ 2, is

E(Yn) =
q + 1
q

+

∞
ℓ=1

pqℓ

1 − qℓ
−

∞
k=0

pqn+k

1 − qn+k
.

The variance Var(Yn) is

Var(Yn) =
q + 1
q2

+

∞
ℓ=1

pqℓ−1(1 + p − qℓ+2)

(1 − qℓ)2
−

∞
k=0

pqn+k−1(1 + p − qn+k+2)

(1 − qn+k)2
.

Remark 3.2. Since C3 :=
q+1
q +


∞

ℓ=1
pqℓ

1−qℓ
is a constant, it follows that

E(Yn) = C3 − qn +Θ(q2n).

Similarly, because C4 :=
q+1
q2

+


∞

ℓ=1
pqℓ−1(1+p−qℓ+2)

(1−qℓ)2
is a constant, then we have

Var(Yn) = C4 − (1 + p)qn−1
+Θ(q2n).

Again, using Maple, more asymptotic terms and larger moments can both be achieved by the same methods discussed in
the proofs.

Theorem 3.5. The probability that the number of rounds Yn in an election (in setup #2) is equal to k is exponentially decreasing
as k → ∞. Namely, for n ≥ 2, we have

P(Yn = k) ∼
pqz∗

2

(1 − q3)

 n
j=3

1 − pz∗

2 − qj

(1 − qj+1)(1 − z∗

2/z
∗

j )


(z∗

2 )
−k as k → ∞,

where z∗

j =
1−qj+1

p(qj+1)
.

For an example of the rapid decrease in limn→∞ P(Yn = k), when p = 3/10 and q = 7/10, we have z∗

2 = 1.469798658 . . . .

Theorem 3.6. The limiting probability that the number of rounds in an election (in setup #2) is equal to k is exponentially
decreasing as k → ∞. We have

lim
n→∞

P(Yn = k) ∼
Rz∗

2

1 − pz∗

2
(z∗

2 )
−k as k → ∞,
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where

R :=

∞
ℓ=2

pqℓ
pqz∗

2

(1 − q3)

 ℓ
j=3

1 − pz∗

2 − qj

(1 − qj+1)(1 − z∗

2/z
∗

j )


,

with z∗

j =
1−qj+1

p(qj+1)
.

4. Proofs

The random variables Xn, Yn, and Kn were all defined in Section 2.

Proof of Theorem 3.1. If n = 0 or n = 1, no election is needed, and thus Xn = 0 for n = 0 and for n = 1. We use the
notation φn(t) = E(etXn) to denote the moment generating function of Xn.

In the cases n = 0 and n = 1, we have φ0(t) = φ1(t) = 1.
For n ≥ 2, we use conditional expectation to get the recursion

φn(t) = E(etXn) =

n
ℓ=0

E(etXn | Kn = ℓ) P(Kn = ℓ),

and E(etXn | Kn = ℓ) = E(et(1+Xℓ)) = etφℓ(t), and P(Kn = ℓ) =
pqℓ

1−qn+1 . So we obtain

φn(t) = et
n
ℓ=0

φℓ(t)
pqℓ

1 − qn+1
for n ≥ 2.

Multiplying on both sides by 1 − qn+1, and subtracting the ℓ = n term, it follows that

(1 − qn+1
− etpqn)φn(t) = et

n−1
ℓ=0

φℓ(t)pqℓ.

Shifting the n by 1, we obtain, for n ≥ 3, (1 − qn − etpqn−1)φn−1(t) = et
n−2

ℓ=0 φℓ(t)pq
ℓ. Using differencing, it follows that

(1 − qn+1
− etpqn)φn(t)− (1 − qn − etpqn−1)φn−1(t) = etφn−1(t)pqn−1 for n ≥ 3.

Thus, we obtain

φn(t) = φn−1(t)
1 − qn

1 − qn(q + etp)
for n ≥ 3.

Telescoping, this yields,

φn(t) = φ2(t)
n

j=3

1 − qj

1 − qj(q + etp)
;

this representation is seen to hold not only for n ≥ 3, but for n = 2 as well. Wemanually compute φ2(t) = etp(1+ q)/(1−

q2(q + etp)). So we conclude, for n ≥ 2, that

φn(t) =
etp(1 + q)

1 − q2(q + etp)

n
j=3

1 − qj

1 − qj(q + etp)
. (1)

From the representation of φn(t) in Eq. (1), it is surprising to see a decomposition of Xn in a sum of random variables. Indeed,
we see that Xn has the same distribution as Z2+Z3+· · ·+Zn, where the Zj’s are independent, and Z2 hasmoment generating
function φ2(t) =

etp(1+q)
1−q2(q+etp)

, and Zj (for 3 ≤ j ≤ n) has moment generating function 1−qj

1−qj(q+etp)
. Computing the expected

values of each of the Zj’s, we obtain

E(Z2) = lim
t→0

d
dt

etp(1 + q)
1 − q2(q + etp)

=
q2 + q + 1

q + 1
,

and, for 3 ≤ j ≤ n,

E(Zj) = lim
t→0

d
dt

1 − qj

1 − qj(q + etp)
=

pqj

1 − qj
.
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Therefore, we conclude

E(Xn) =
q2 + q + 1

q + 1
+

n
j=3

pqj

1 − qj
= p +

∞
ℓ=1

pqℓ

1 − qℓ
−

∞
k=0

pqn+k+1

1 − qn+k+1
.

This establishes the first half of Theorem 3.1.
Computing the second moments and then the variances of each of the Zj’s, we obtain

E(Z2
2 ) = lim

t→0

d2

dt2
etp(1 + q)

1 − q2(q + etp)
=

p(1 + q)(1 − q3)(1 − q2 + 2pq2)
(1 − q2)3

,

and

Var(Z2) = E(Z2
2 )− (E(Z2))2 =

p(1 + q)(1 − q3)(1 − q2 + 2pq2)
(1 − q2)3

−

q2 + q + 1
q + 1

2
=
(q2 + q + 1)q2

(q + 1)2
,

and, for 3 ≤ j ≤ n,

E(Z2
j ) = lim

t→0

d2

dt2
1 − qj

1 − qj(q + etp)
=

pqj(1 + qj(1 − 2q))
(1 − qj)2

,

and

Var(Zj) = E(Z2
j )− (E(Zj))2 =

pqj(1 + qj(1 − 2q))
(1 − qj)2

−

 pqj

1 − qj

2
=

pqj(1 − qj+1)

(1 − qj)2
.

Thus, we have

Var(Xn) =
(q2 + q + 1)q2

(q + 1)2
+

n
j=3

pqj(1 − qj+1)

(1 − qj)2
=

∞
ℓ=1

pqℓ(1 − qℓ+1)

(1 − qℓ)2
− q(q + 1)−

∞
k=0

pqn+k+1(1 − qn+k+2)

(1 − qn+k+1)2
.

This establishes the second half of Theorem 3.1.

Proof of Theorem 3.2. Now we analyze the asymptotic distribution of Xn. We proceed as in Lavault and Louchard (2006,
Section 3). For n ≥ 2, we have

P(Xn = 1) =
p

1 − qn+1
+

pq
1 − qn+1

=
p(q + 1)
1 − qn+1

,

and therefore limn→∞ P(Xn = 1) = p(q + 1). For n ≥ 2 and j ≥ 2, we have the recurrence

P(Xn = j) =

n
ℓ=2

pqℓ

1 − qn+1
P(Xℓ = j − 1). (2)

It follows that

lim
n→∞

P(Xn = j) =

∞
ℓ=2

pqℓP(Xℓ = j − 1). (3)

We define an ordinary generating function

h(z) :=

∞
j=1

lim
n→∞

P(Xn = j)z j.

Now we define the probability generating function of Xn as

fn(z) =

∞
j=1

P(Xn = j)z j.

From Eq. (2), it follows that, for n ≥ 2,

fn(z) =
p(q + 1)z
1 − qn+1

+

n
ℓ=2

pqℓ

1 − qn+1
zfℓ(z). (4)

When n = 2, it follows that

f2(z) =
p(q + 1)z

(1 − q3)(1 − z/z2)
,



G. Louchard, M.D. Ward / Statistics and Probability Letters 101 (2015) 40–48 45

where z2 =
1−q3

pq2
. Returning to Eq. (4), we multiply by 1 − qn+1, subtract the Fn(z) terms on each side, shift the n by 1, and

use differencing. It follows that, for n ≥ 3, we have

fn(z) =
1 − qn

1 − pqnz − qn+1
fn−1(z).

Telescoping, this yields, for n ≥ 2, an explicit expression for fn(z):

fn(z) =
p(q + 1)z

(1 − q3)(1 − z/z2)

n
j=3

1 − qj

1 − pqjz − qj+1
.

Now we define zj :=
1−qj+1

pqj
, so we can rewrite the expression for Fn(z) as:

fn(z) =
p(q + 1)z

(1 − q3)(1 − z/z2)

n
j=3

1 − qj

(1 − qj+1)(1 − z/zj)
.

Since 1 < z2 < z3 < z4 < · · ·, it follows that z2 is a simple pole (i.e., a pole of order 1) of fn(z). Thus, we can use singularity
analysis (Flajolet and Sedgewick, 2009, Chapter 6) to extract the first order asymptotic growth of P(Xn = k) as k → ∞,
namely, for n ≥ 2,

P(Xn = k) = [zk]fn(z) ∼
p(q + 1)z2
(1 − q3)

 n
j=3

1 − qj

(1 − qj+1)(1 − z2/zj)


(z2)−k as k → ∞.

Proof of Theorem 3.3. Now we define another ordinary generating function g(z) as

g(z) :=

∞
j=1

∞
ℓ=2

pqℓP(Xℓ = j)z j.

It follows from (3) that

h(z) := p(q + 1)z + zg(z).

We have g(z) =


∞

ℓ=2 pq
ℓfℓ(z). Since each fℓ(z) has a simple pole at z2, and this pole is the closest singularity to the origin,

it follows that g(z)’s closest singularity to the origin is also a simple pole at z2. Thus, if we define

r :=

∞
ℓ=2

pqℓ
p(q + 1)z2
(1 − q3)

 ℓ
j=3

1 − qj

(1 − qj+1)(1 − z2/zj)


,

it follows that g(z) ≍ r/(1 − z/z2) as z → z2. Since g(z)’s closest singularity to the origin is a pole at z2, it follows that
h(z) ≍ p(q + 1)z2 + z2r/(1 − z/z2) as z → z2, and moreover,

lim
n→∞

P(Xn = k) = [zk]h(z) ∼ rz2(z2)−k as k → ∞.

Proof of Theorem 3.4. This proof will mirror the proof of Theorem 3.1, so we omit some of the details. Wemostly highlight
the differences from the earlier proof, to keep the argument succinct.

If n = 0 or n = 1, no election is needed, and thus Yn = 0 for n = 0 and for n = 1. We use ψn(t) = E(etYn) to denote the
moment generating function of Yn. As before, for n = 0 and n = 1, we have ψ0(t) = ψ1(t) = 1.

For n ≥ 2, we again use conditional expectation to get a recursion, namely

ψn(t) = E(etYn) =

n
ℓ=0

E(etYn | Kn = ℓ) P(Kn = ℓ),

and E(etYn | Kn = ℓ) = E(et(1+Yℓ)) = etψℓ(t) for ℓ ≥ 1, but the ℓ = 0 case differs from setup #1, so we have

E(etYn | Kn = 0) = E(et(1+Yn)) = etψn(t),

and as before, P(Kn = ℓ) =
pqℓ

1−qn+1 . So we obtain

ψn(t) = etψn(t)
p

1 − qn+1
+ et

n
ℓ=1

ψℓ(t)
pqℓ

1 − qn+1
for n ≥ 2.
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We again multiply by 1 − qn+1; subtract both ψn terms; shift the n by 1; and use differencing and telescoping; it follows
that

ψn(t) =
etpq

1 − q3 − etp − etpq2

n
j=3

1 − qj − etp
1 − etp − qj(q + etp)

for n ≥ 2. (5)

Again, it is surprising to see that Yn can be decomposed as a sum of n − 1 independent random variables with moment
generating functions corresponding to the factors of the displayed equation for ψn(t) written above. Thus, differentiating
each MGF and taking t → 0 in each factor, we obtain

E(Yn) =
q2 + q + 1

q
+

n
j=3

pqj−1

1 − qj−1
=

q + 1
q

+

∞
ℓ=1

pqℓ

1 − qℓ
−

∞
k=0

pqn+k

1 − qn+k
.

This establishes the first half of Theorem 3.4.
Computing the second moments and then the variances of each of the terms in the decomposition of Yn into n − 1

independent random variables, we obtain

Var(Yn) =
(1 − q3)(1 − q3 + p + pq2)

(pq)2
−

q2 + q + 1
q

2

+

n
j=3

pqj+1(1 − qj−1)(1 + pqj − qj+1
+ p)

(1 − pqj − qj+1 − p)3
−

 pqj−1

1 − qj−1

2
which simplifies to

Var(Yn) =
(q2 + 1)(q2 + q + 1)

q2
+

n
j=3

pqj−2(1 + p − qj+1)

(1 − qj−1)2

=
q + 1
q2

+

∞
ℓ=1

pqℓ−1(1 + p − qℓ+2)

(1 − qℓ)2
−

∞
k=0

pqn+k−1(1 + p − qn+k+2)

(1 − qn+k)2
.

This establishes the second half of Theorem 3.4.

Proof of Theorem 3.5. Now we analyze the asymptotic distribution of Yn. We proceed as in Lavault and Louchard (2006,
Section 3). For n ≥ 2, we have

P(Yn = 1) =
pq

1 − qn+1
,

and therefore limn→∞ P(Yn = 1) = pq. For n ≥ 2 and j ≥ 2, we have the recurrence

P(Yn = j) =
p

1 − qn+1
P(Yn = j − 1)+

n
ℓ=2

pqℓ

1 − qn+1
P(Yℓ = j − 1). (6)

It follows that

lim
n→∞

P(Yn = j) = p lim
n→∞

P(Yn = j − 1)+

∞
ℓ=2

pqℓP(Yℓ = j − 1). (7)

Unlike in the analogous proof for Xn, we now need to iterate the previous equation j − 1 times. This yields, for j ≥ 2,

lim
n→∞

P(Yn = j) = pj−1 lim
n→∞

P(Yn = 1)+

j−1
k=1

pk−1
∞
ℓ=2

pqℓP(Yℓ = j − k).

We define an ordinary generating function

H(z) :=

∞
j=1

lim
n→∞

P(Yn = j)z j.

Unlike in the analogous case for Xn, the H(z) has a singularity of its own (because of the denominator 1 − pz), namely, at
z∗

1 := 1/p. This is the closest singularity of H(z) to the origin.
Now we define the probability generating function of Yn as

Fn(z) =

∞
j=1

P(Yn = j)z j.
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From Eq. (6), it follows that, for n ≥ 2,

Fn(z) =
pqz

1 − qn+1
+

pz
1 − qn+1

Fn(z)+

n
ℓ=2

pqℓ

1 − qn+1
zFℓ(z). (8)

When n = 2, it follows that

F2(z) =
pqz

(1 − q3)(1 − z/z∗

2 )
,

where z∗

2 =
1−q3

p(q2+1)
. Returning to Eq. (8), we multiply by 1− qn+1, subtract the Fn(z) terms on each side, shift the n by 1, and

use differencing. It follows that, for n ≥ 3, we have

Fn(z) =
1 − pz − qn

1 − pz − pqnz − qn+1
Fn−1(z).

Telescoping, this yields, for n ≥ 2, an explicit expression for Fn(z):

Fn(z) =
pqz

(1 − q3)(1 − z/z∗

2 )

n
j=3

1 − pz − qj

1 − pz − pqjz − qj+1
.

Now we define z∗

j :=
1−qj+1

p(qj+1)
, so we can rewrite the expression for Fn(z) as:

Fn(z) =
pqz

(1 − q3)(1 − z/z∗

2 )

n
j=3

1 − pz − qj

(1 − qj+1)(1 − z/z∗

j )
.

As before, since 1 < z∗

2 < z∗

3 < z∗

4 < · · ·, it follows that z∗

2 is a simple pole (i.e., of order 1) of Fn(z). Thus, by singularity
analysis, we extract the first order asymptotic growth of P(Yn = k) as k → ∞, for n ≥ 2:

P(Yn = k) = [zk]Fn(z) ∼
pqz∗

2

(1 − q3)

 n
j=3

1 − pz∗

2 − qj

(1 − qj+1)(1 − z∗

2/z
∗

j )


(z∗

2 )
−k as k → ∞.

Proof of Theorem 3.6. Now we define another ordinary generating function G(z) as

G(z) :=

∞
j=1

∞
ℓ=2

pqℓP(Yℓ = j)z j.

It follows from (7) that

H(z) = pqz + pzH(z)+ zG(z),

or equivalently,

H(z) =
pqz + zG(z)

1 − pz
.

We have G(z) =


∞

ℓ=2 pq
ℓFℓ(z). Since each Fℓ(z) has a simple pole at z∗

2 , and this pole is the closest singularity to the origin,
it follows that G(z)’s closest singularity to the origin is also a simple pole at z∗

2 . Thus, if we define

R :=

∞
ℓ=2

pqℓ
pqz∗

2

(1 − q3)

 ℓ
j=3

1 − pz∗

2 − qj

(1 − qj+1)(1 − z∗

2/z
∗

j )


,

it follows that G(z) ≍ R/(1 − z/z∗

2 ) as z → z∗

2 . Since H(z)’s closest singularity to the origin is a pole at z∗

2 , it follows that

H(z) ≍
pqz∗2+z∗2R/(1−z/z∗2 )

1−pz∗2
as z → z∗

2 , and moreover,

lim
n→∞

P(Yn = k) = [zk]H(z) ∼
Rz∗

2

1 − pz∗

2
(z∗

2 )
−k as k → ∞.

Final remarks

The number of survivors at the beginning and ending stages of the election can also be analyzed by similar techniques.
The authors already conducted this analysis too. Interested readers arewelcome to contact us, to obtain these further details.



48 G. Louchard, M.D. Ward / Statistics and Probability Letters 101 (2015) 40–48

Acknowledgments

M. D. Ward’s work is supported by the Center for Science of Information (CSoI), an NSF Science and Technology Center,
under grant agreement CCF-0939370, and by NSF DMS-1246818. He thanks R. Kalpathy and H. Mahmoud for their kind
hospitality during a sabbatical visit to The George Washington University in 2013–14.

Both authors thank R. Kalpathy, who was a co-author with M. D. Ward on the earlier paper Kalpathy and Ward (2014),
on which this paper builds.

References

Flajolet, P., Sedgewick, R., 2009. Analytic Combinatorics. Cambridge University Press.
Kalpathy, R., Ward, M.D., 2014. On a leader election algorithm: truncated geometric case study. Statist. Probab. Lett. 87, 40–47.
Lavault, C., Louchard, G., 2006. Asymptotic analysis of a leader election algorithm. Theoret. Comput. Sci. 359, 239–254.
Louchard, G., Prodinger, H., 2009. The asymmetric leader election algorithm. Ann. Comb. 12, 449–478.

http://refhub.elsevier.com/S0167-7152(15)00068-1/sbref1
http://refhub.elsevier.com/S0167-7152(15)00068-1/sbref2
http://refhub.elsevier.com/S0167-7152(15)00068-1/sbref3
http://refhub.elsevier.com/S0167-7152(15)00068-1/sbref4

	The truncated geometric election algorithm: Duration of the election
	Motivation
	Definitions
	Main results
	Proofs
	Acknowledgments
	References


